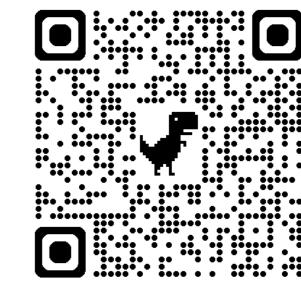
Periodic Skill Discovery

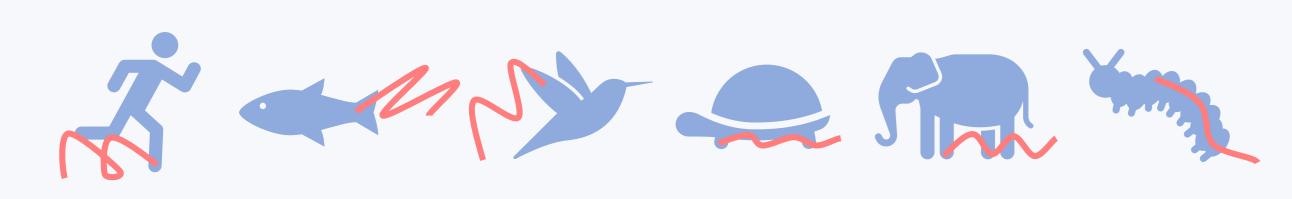
Jonghae Park¹ Daesol Cho² Jusuk Lee¹ Dongseok Shim¹ Inkyu Jang¹ H. Jin Kim¹ ¹Seoul National University ²Georgia Institute of Technology



Why Periodic Skills Matter?

A fundamental observation in nature is that nearly all forms of locomotion are inherently periodic.

However, existing unsupervised skill discovery methods have rarely addressed the role of periodicity.

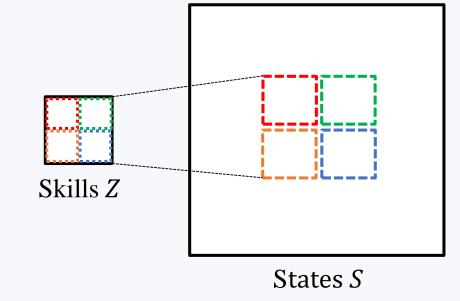


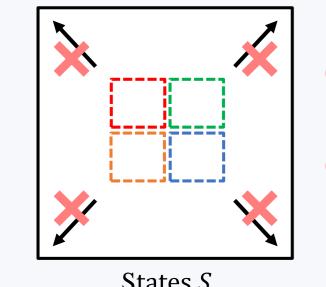
Prior works often fail to learn *multi-timescale* behaviors

(1) Mutual Information (MI) - based skill discovery (e.g., DIAYN, DADS)

$$I(S;Z) = -H(Z|S) + H(Z) = \mathbb{E}_{z,\tau}[\log p(z|s)] - \mathbb{E}_z[\log p(z)]$$

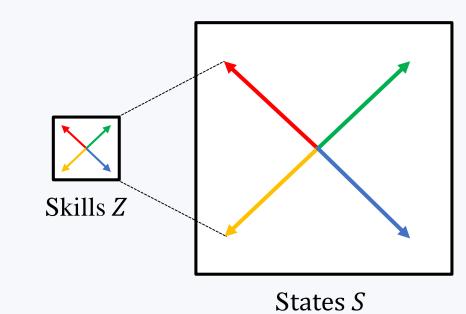
$$\geq \mathbb{E}_{z,\tau}[\log q_{\theta}(z|s)] + (\text{constant}) \simeq \mathbb{E}_{z,\tau}\left[-\frac{1}{2\sigma^2}\|z - \mu_{\theta}(s)\|_2^2\right] + (\text{constant})$$

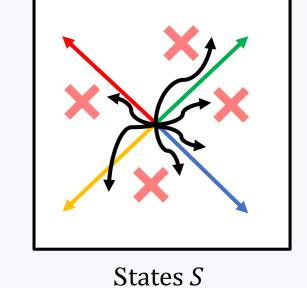




(2) Distance - maximizing skill discovery (e.g., LSD, CSD, METRA, LGSD)

$$\mathcal{J}_{DSD} := \mathbb{E}_{(z,\tau)\sim\mathcal{D}} \left[(\phi(s_{t+1}) - \phi(s_t))^\top z \right] \quad \text{s.t.} \quad \|\phi(x) - \phi(y)\| \le d(x,y) \quad \forall x, y \in \mathcal{D}$$

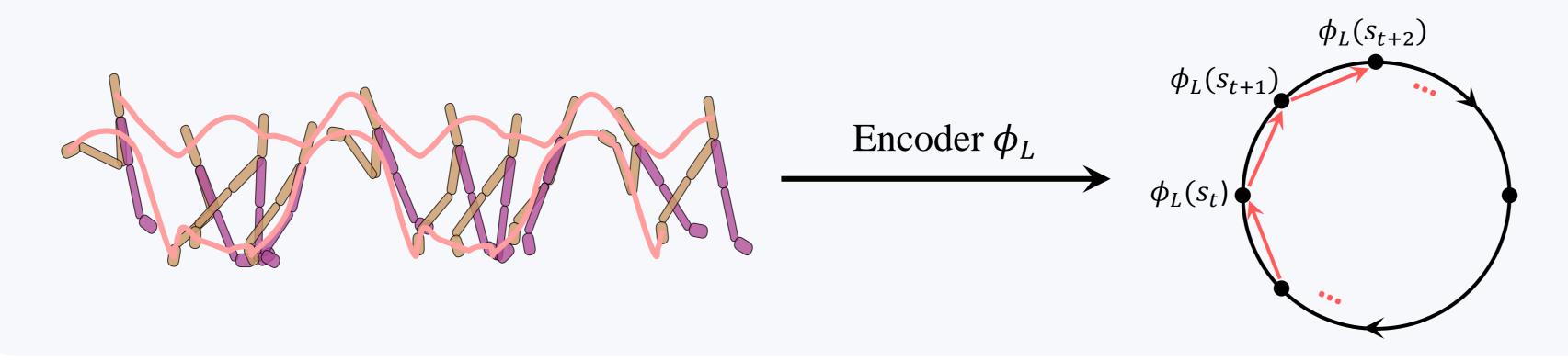




- Little incentive to adjust the temporal patterns of skills

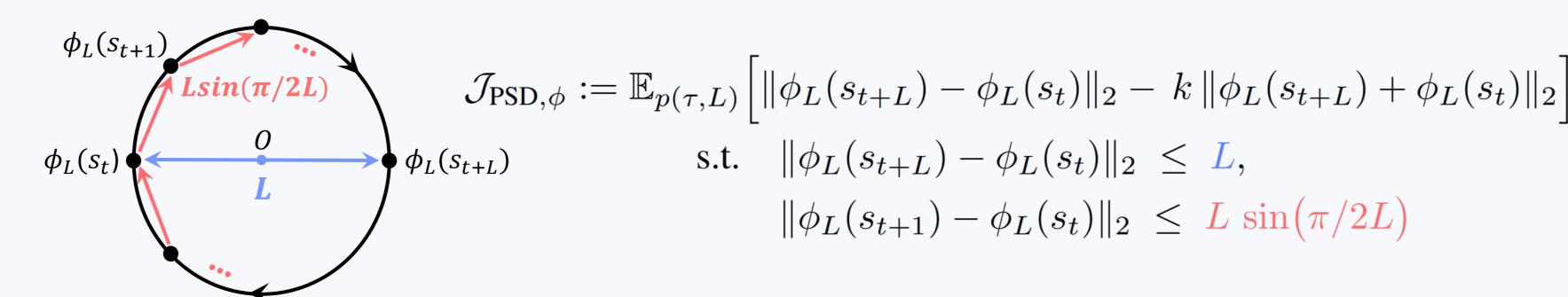
Intuition

- ► We introduce **Periodic Skill Discovery (PSD)**
- ► Key intuition: Construct a circular latent space for periodic behavior.



Representations for Periodicity

Construct a regular 2L-gon inscribed in a circle of diameter L.



Single-step Intrinsic Reward for the policy π ($a \mid s, L$)

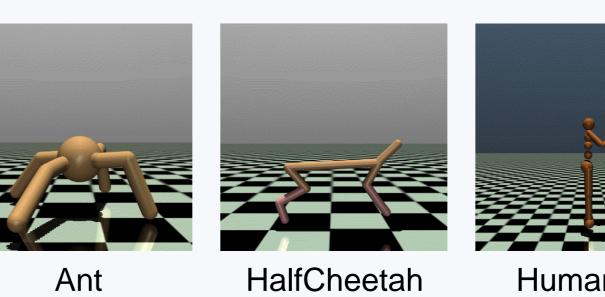
▶ Define a single-step intrinsic reward encouraging 2L-periodicity.

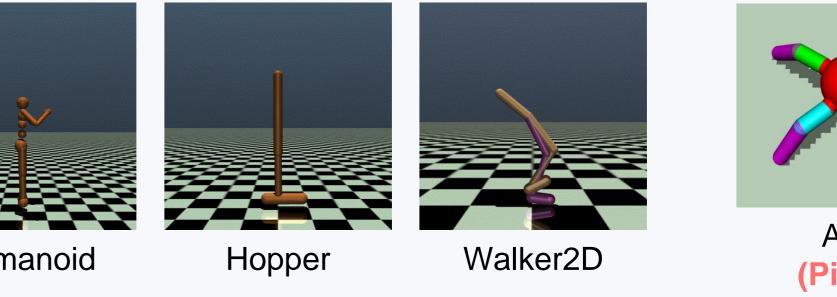
$$\Delta := \|\phi_L(s_{t+1}) - \phi_L(s_t)\|_2 - L\sin(\pi/2L) \qquad r_{PSD}(s_t, s_{t+1}, L) := \exp(-\kappa \Delta^2)$$

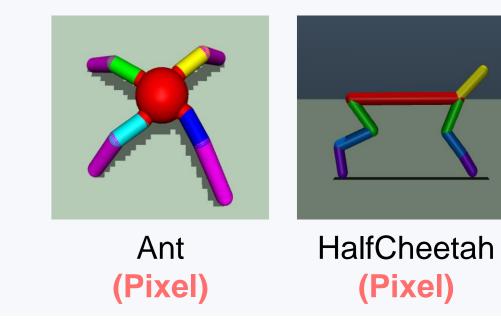
Adaptive Sampling Method

- ► To enable the agent to discover a **maximally diverse** range of periods without any prior knowledge of its inherent period ranges, we introduce an adaptive sampling method that dynamically adjusts the sampling range during training.
- ► Key idea: Evaluate the policy's **performance on the boundary of the current** sampling range, using $\sum_{t=0}^{T-1} r_{PSD}(L_{bound})$ as the evaluation criterion.

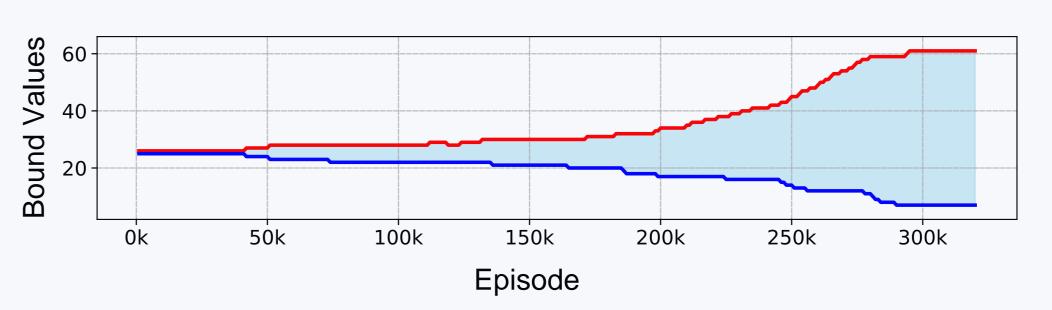
Benchmark Environments





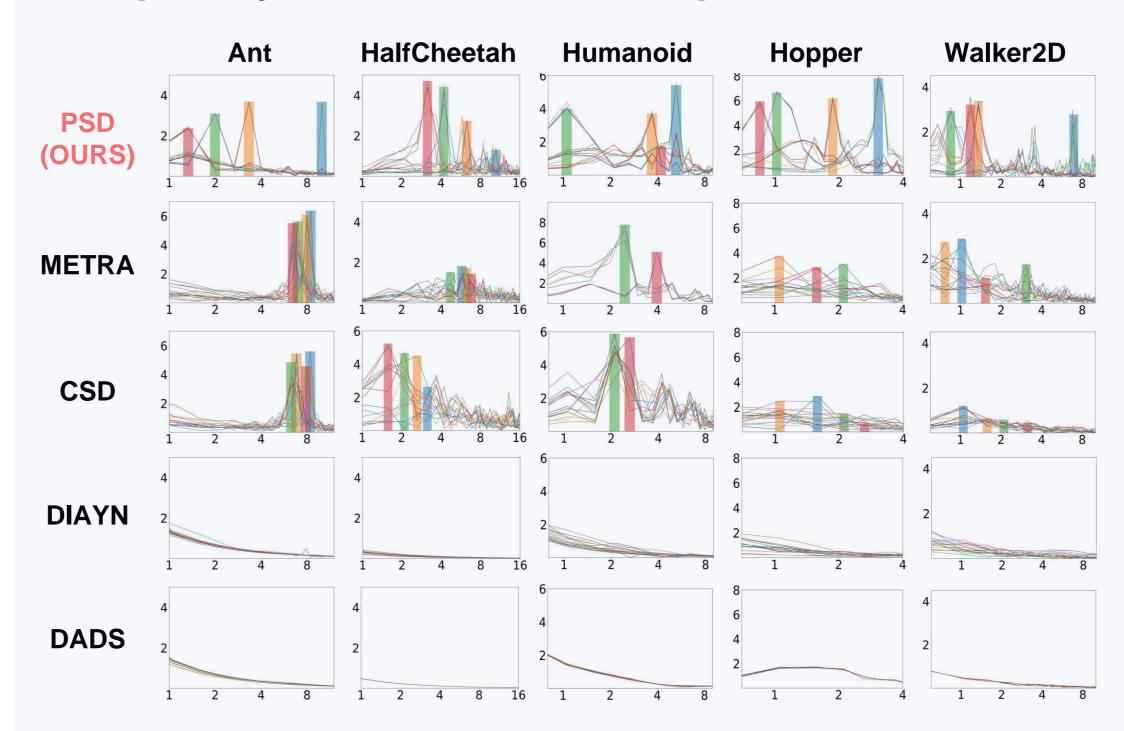


Learned Sampling Bounds Over Time



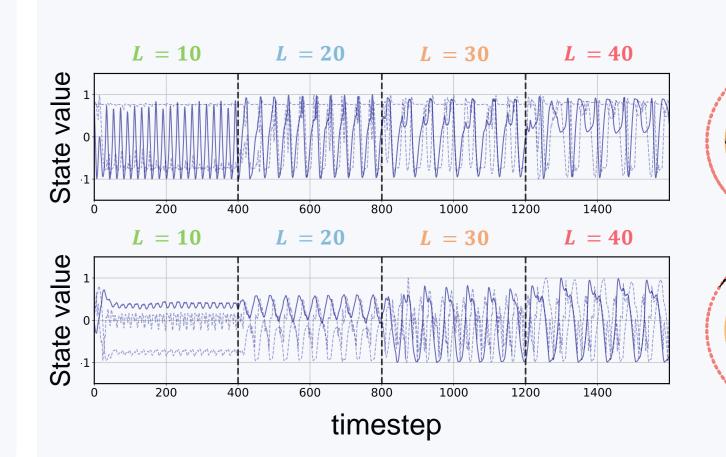
As training progresses, increasingly challenging periods are proposed to the agent, enabling the discovery of a wider range of periodic behaviors.

Frequency-Domain Skill Comparison



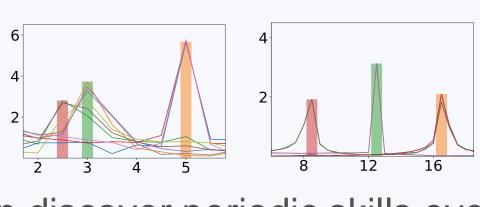
We apply a **Fourier transform** to the skill trajectories (frequency on the x-axis, amplitude on the y-axis). PSD consistently discovers a wider range of frequencies than the baselines.

State Trajectories & Latents (PCA)



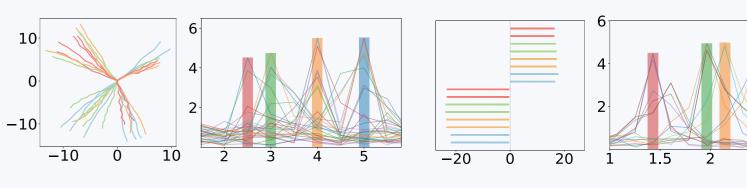
For varying values of L, PSD successfully constructs a circular latent space whose diameter is L, and learns behaviors with the desired period of 2L.

PSD with Pixel-based Observations



PSD can discover periodic skills even in pixel-based observation. (see our demo)

PSD combined with METRA (Park et al., 2023)



PSD naturally aligns with METRA, as both methods capture temporal structure of skills. (see our paper for details)