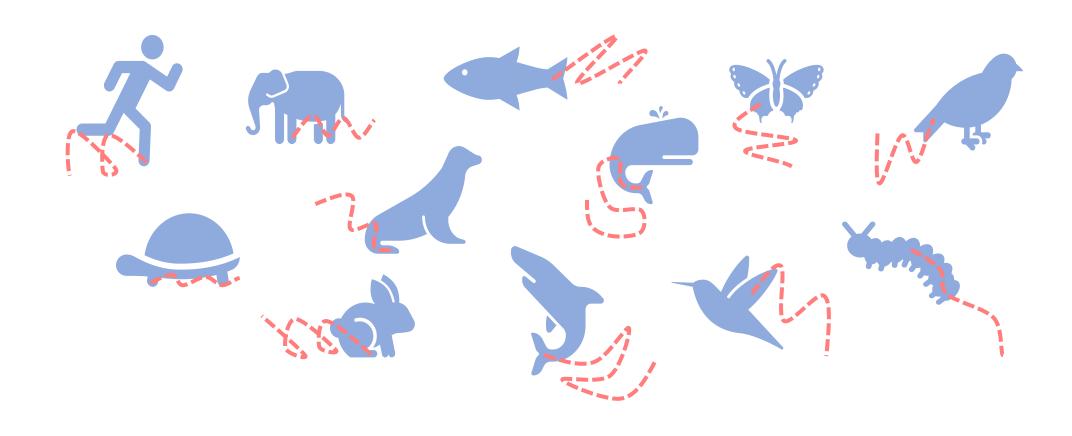
Periodic Skill Discovery

Jonghae Park, Daesol Cho, Jusuk Lee, Dongseok Shim, Inkyu Jang, H. Jin Kim

Lab for Autonomous Robotics Research

Seoul National University

Locomotion in nature: Inherently Periodic

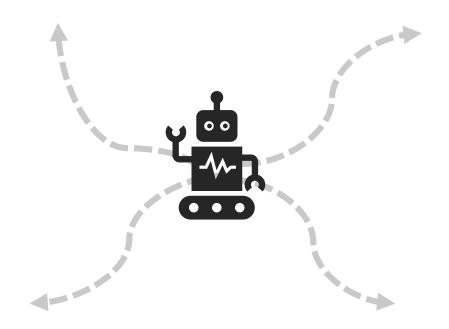


All forms of locomotion skills share a *periodic structure*

Unsupervised Skill Discovery

Unsupervised Skill Discovery

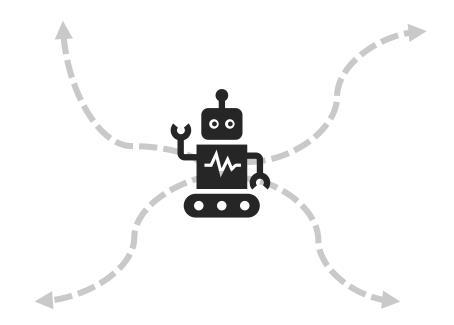
(1) Unsupervised skill learning



Learn useful skills from the environment without any external rewards

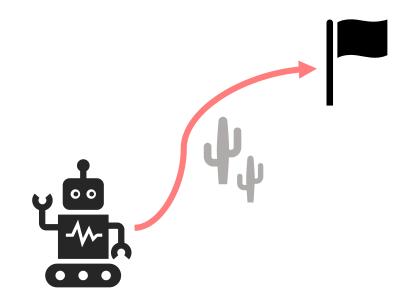
Unsupervised Skill Discovery

(1) Unsupervised skill learning



Learn useful skills from the environment without any external rewards

(2) Solving downstream task efficiently



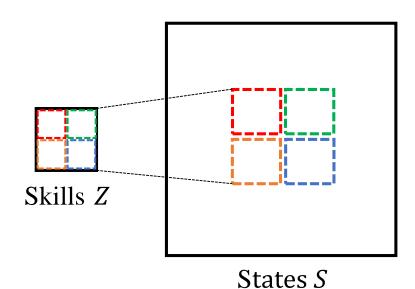
Leverage the learned skills for finetuning or high-level planning

(1) Mutual Information (MI) - based skill discovery (e.g., DIAYN, DADS, ...)

(1) Mutual Information (MI) - based skill discovery (e.g., DIAYN, DADS, ...)

$$I(S; Z) = -H(Z|S) + H(Z) = \mathbb{E}_{z,\tau}[\log p(z|s)] - \mathbb{E}_z[\log p(z)]$$

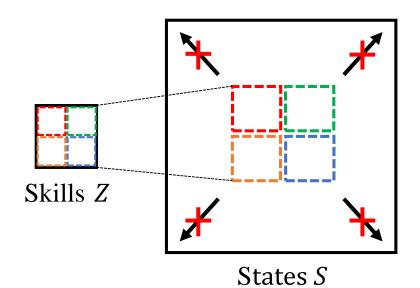
$$\geq \mathbb{E}_{z,\tau}[\log q_{\theta}(z|s)] + (\text{constant}) \simeq \mathbb{E}_{z,\tau}\left[-\frac{1}{2\sigma^2}||z - \mu_{\theta}(s)||_2^2\right] + (\text{constant})$$



(1) Mutual Information (MI) - based skill discovery (e.g., DIAYN, DADS, ...)

$$I(S; Z) = -H(Z|S) + H(Z) = \mathbb{E}_{z,\tau}[\log p(z|s)] - \mathbb{E}_z[\log p(z)]$$

$$\geq \mathbb{E}_{z,\tau}[\log q_{\theta}(z|s)] + (\text{constant}) \simeq \mathbb{E}_{z,\tau}\left[-\frac{1}{2\sigma^2}||z - \mu_{\theta}(s)||_2^2\right] + (\text{constant})$$



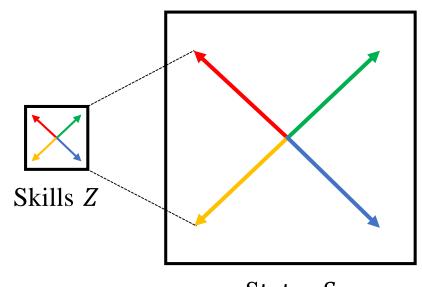
"No additional motivation for exploration"

"Do not consider temporal aspects of skills"

(2) Distance - maximizing skill discovery (e.g., LSD, CSD, METRA, ...)

(2) Distance - maximizing skill discovery (e.g., LSD, CSD, METRA, ...)

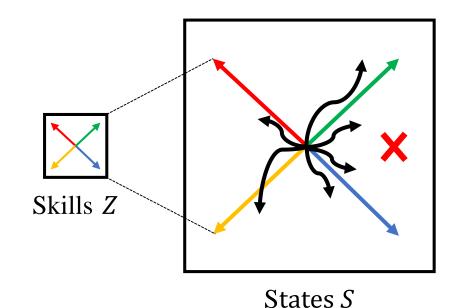
$$\mathcal{J}_{DSD} := \mathbb{E}_{(z,\tau) \sim \mathcal{D}} \left[(\phi(s_{t+1}) - \phi(s_t))^{\top} z \right] \quad \text{s.t.} \quad \|\phi(x) - \phi(y)\| \le d(x,y) \quad \forall x, y \in \mathcal{D}$$



States S

(2) Distance - maximizing skill discovery (e.g., LSD, CSD, METRA, ...)

$$\mathcal{J}_{DSD} := \mathbb{E}_{(z,\tau) \sim \mathcal{D}} \Big[(\phi(s_{t+1}) - \phi(s_t))^{\top} z \Big] \quad \text{s.t.} \quad \|\phi(x) - \phi(y)\| \le d(x,y) \quad \forall x, y \in \mathcal{D}$$



"Prefers hard-to-achieve behaviors"

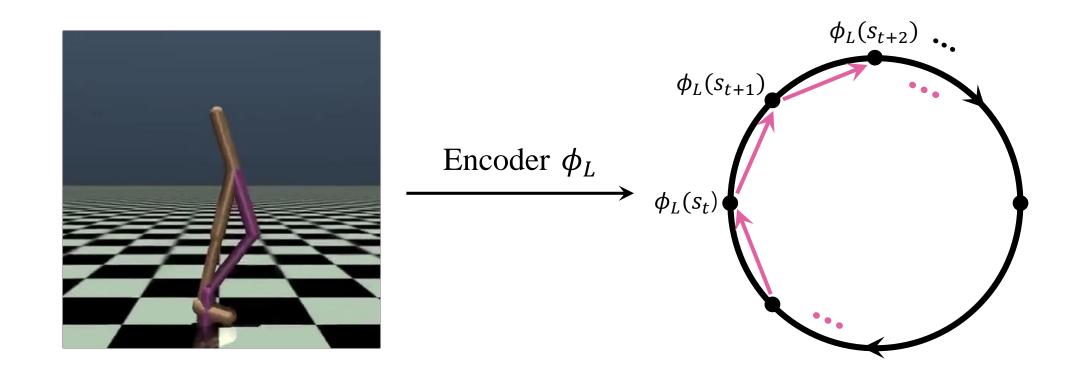
"Little incentive to adjust the temporal patterns of skills"

Both approaches often fail to capture the **periodic structure** of behaviors.

Intuition

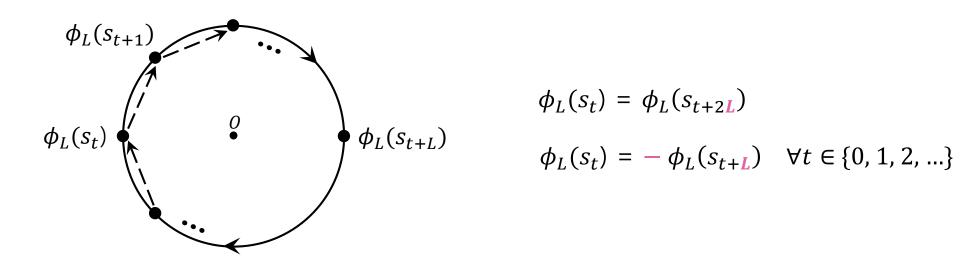
Intuition

Construct a circular latent space to capture periodic behavior

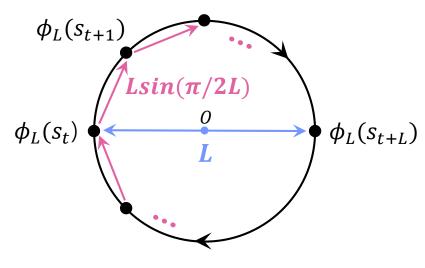


To learn a **representation** that returns to its initial state every **2L** timesteps..

To learn a **representation** that returns to its initial state every **2L** timesteps..



To learn a representation that returns to its initial state every 2L timesteps..

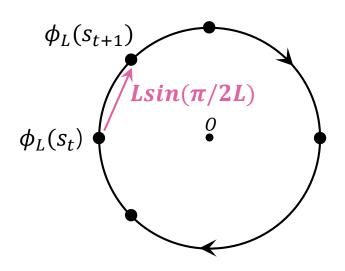


$$\mathcal{J}_{PSD,\phi} := \mathbb{E}_{p(\tau,L)} \Big[\|\phi_L(s_{t+L}) - \phi_L(s_t)\|_2 - k \|\phi_L(s_{t+L}) + \phi_L(s_t)\|_2 \Big]$$
s.t. $\|\phi_L(s_{t+L}) - \phi_L(s_t)\|_2 \le L$, $\|\phi_L(s_{t+L}) - \phi_L(s_t)\|_2 \le L \sin(\pi/2L)$

"Constructs a 2L-gon inscribed in a circle of diameter L"

To learn a policy $\pi(a \mid s, L)$ that repeats every **2L** timesteps..

To learn a policy $\pi(a \mid s, L)$ that repeats every **2L** timesteps...

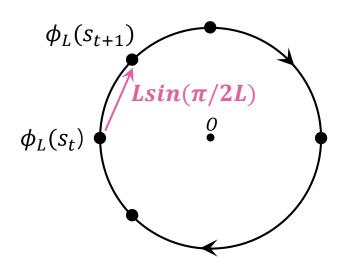


$$\Delta := \|\phi_L(s_{t+1}) - \phi_L(s_t)\|_2 - L\sin(\pi/2L)$$

$$r_{PSD}(s_t, s_{t+1}, L) := \exp(-\kappa \Delta^2)$$

$$r_{\text{PSD}}(s_t, s_{t+1}, L) := \exp(-\kappa \Delta^2)$$

To learn a policy $\pi(a \mid s, L)$ that repeats every **2L** timesteps..



$$\Delta := \|\phi_L(s_{t+1}) - \phi_L(s_t)\|_2 - L\sin(\pi/2L)$$

$$r_{PSD}(s_t, s_{t+1}, L) := \exp(-\kappa \Delta^2)$$

"Single-step intrinsic reward encouraging 2L-periodicity"

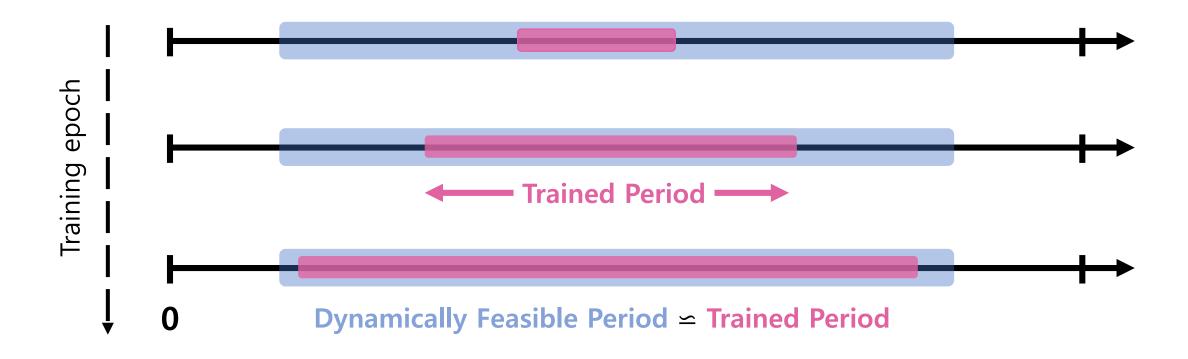
How can PSD learn maximally diverse periods?

How can PSD learn maximally diverse periods?

Propose increasingly harder periods to expand into the dynamically feasible range

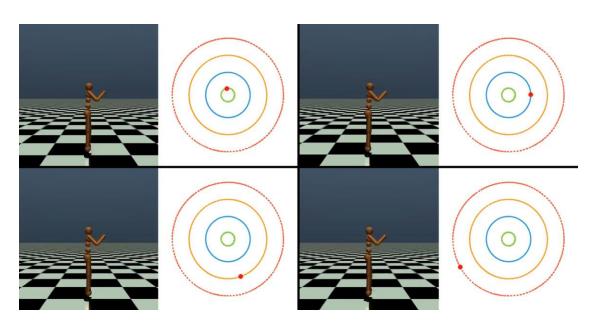
How can PSD learn maximally diverse periods?

Propose increasingly harder periods to expand into the dynamically feasible range

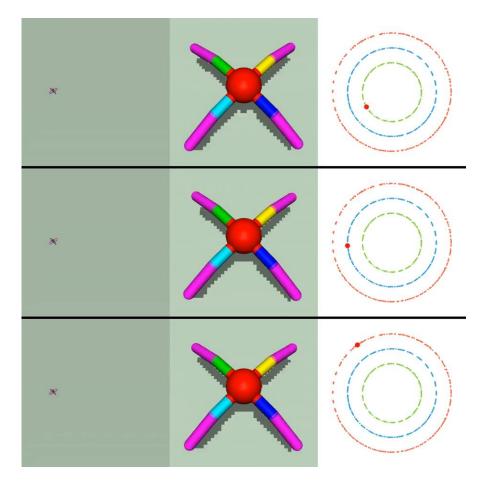


^{*} See our paper for detailed update rule 🙂

Results: Latent Visualization



State-based environment



Pixel-based environment

^{*} See our project page for more experimental demos 😊

Results: PSD with METRA (Park et al., 2023)

Objective of METRA

$$\mathcal{J}_{\text{METRA},\phi_m} = \mathbb{E}_{(s,s',z)\sim\mathcal{D}} \left[(\phi_m(s') - \phi_m(s))^\top z + \lambda_m \cdot \min\left(\epsilon, 1 - \|\phi_m(s') - \phi_m(s)\|_2^2\right) \right]$$

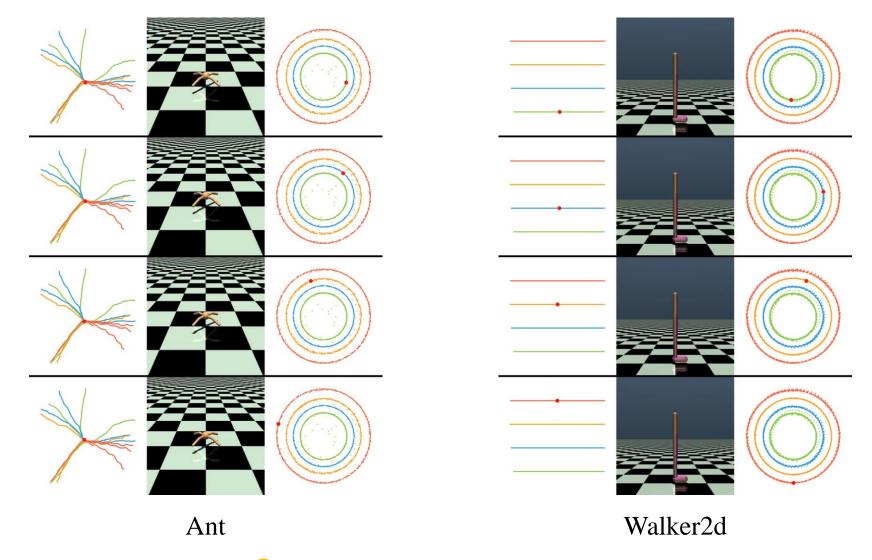
$$\mathcal{J}_{\text{METRA},\lambda_m} = -\lambda_m \cdot \mathbb{E}_{(s,s',z)\sim\mathcal{D}} \left[\min\left(\epsilon, 1 - \|\phi_m(s') - \phi_m(s)\|_2^2\right) \right],$$

Intrinsic Reward of PSD with METRA (with mutual conditioning)

$$\phi_{L}(s) \longrightarrow \phi_{L}(s, z), \quad \phi_{m}(s) \longrightarrow \phi_{m}(s, \underline{L})$$

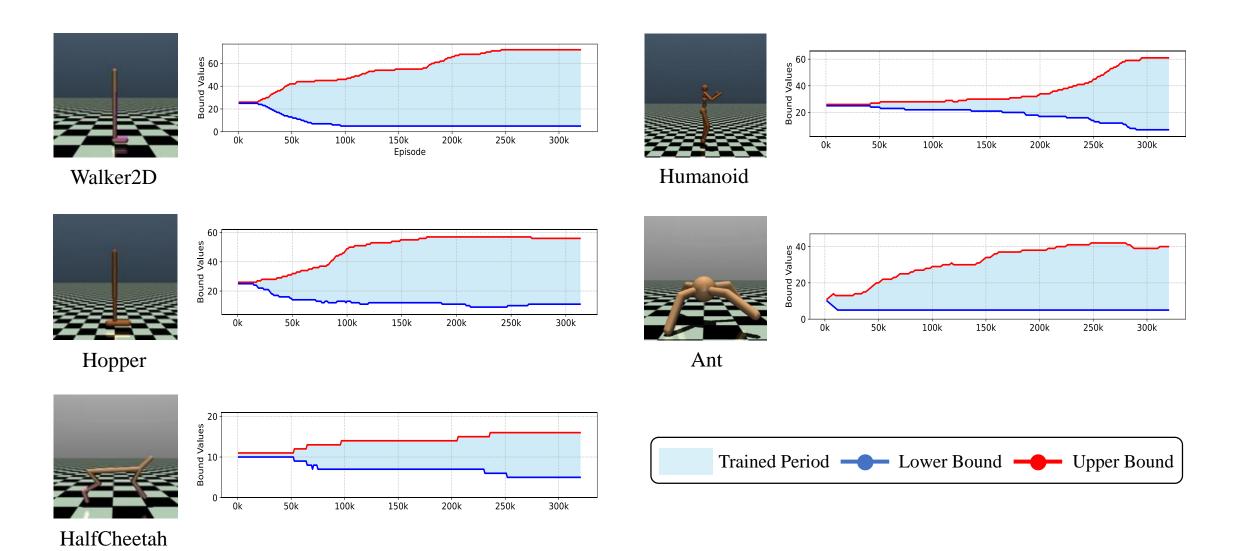
$$\pi(a \mid s, z, \underline{L}) \leftarrow \arg \max_{\pi} \mathbb{E}_{p(\tau, z, \underline{L})} \Big[\sum_{t=0}^{T-1} \underbrace{(\phi_{m}(s_{t+1}) - \phi_{m}(s_{t}))^{\top} z}_{r_{\text{METRA}}} + \underbrace{\exp(-\kappa \Delta(\underline{L})^{2})}_{r_{\text{PSD}}} \Big]$$

Results: PSD with METRA (Park et al., 2023)

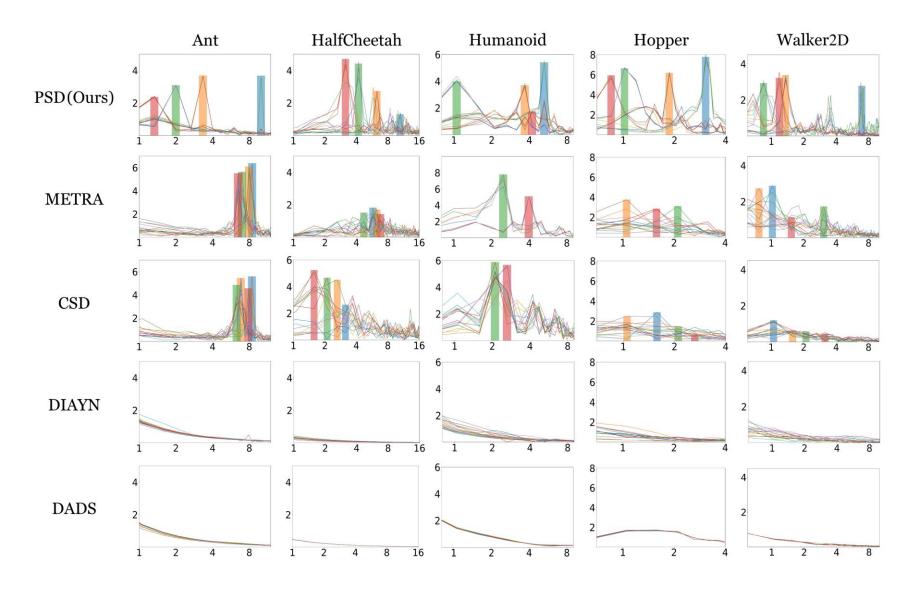


^{*} See our project page for more experimental demos 😊

Results: Evolution of the sampling bounds during training



Results: Skill trajectories in the frequency domain



Results: Downstream task performance

Table 1: **Comparison of downstream task performance.** We evaluate PSD against existing skill discovery methods. High-level policies are trained using PPO with the skill policies kept frozen. All reported values are average returns over 10 seeds.

Downstream task	DIAYN	DADS	CSD	METRA	PSD (Ours)
HalfCheetah-hurdle	0.6 ± 0.5	0.9 ± 0.3	0.8 ± 0.6	$1.9{\pm}0.8$	3.8 ±2.0
Walker2D-hurdle	2.6 ± 0.5	1.9 ± 0.3	4.1 ± 1.3	3.1 ± 0.5	5.4 ±1.4
HalfCheetah-friction	13.2 ± 3.4	12.4 ± 2.9	12.5 ± 3.8	30.1 ± 13.1	43.4 ±19.1
Walker2D-friction	4.6 ± 1.2	1.6 ± 0.1	5.3 ± 0.3	$5.2{\pm}1.6$	8.7 ±1.7

Conclusion

We introduce **Periodic Skill Discovery (PSD)**, a framework for unsupervised skill discovery that captures the periodic nature of behaviors by embedding states into a circular latent space.

PSD provides a scalable and principled framework for discovering temporally structured behaviors in RL.

