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Locomotion In nature : inherently Periodic

All forms of locomotion skills share a periodic structure
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Unsupervised Skill Discovery

(1) Unsupervised skill learning
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Unsupervised Skill Discovery

(1) Unsupervised skill learning (2) Solving downstream task efficiently
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Learn useful skills from the environment Leverage the learned skills for
without any external rewards finetuning or high-level planning
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(1) Mutual Information (M) - based skill discovery (.g., DIAYN, DADS, ...)
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Figure adapted from: Park et al., METRA: Scalable Unsupervised RL with Metric-Aware Abstraction (2023)
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(1) Mutual Information (M) - based skill discovery (.g., DIAYN, DADS, ...)
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(2) Distance - maximizing skill discovery (e.g., Lsb, csb, METRA, ...)
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Figure adapted from: Park et al., METRA: Scalable Unsupervised RL with Metric-Aware Abstraction (2023)



Prior works often fail to learn

behaviors

(2) Distance - maximizing skill discovery (e.g., Lsb, csb, METRA, ...)
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“Prefers hard-to-achieve behaviors”

“Little incentive to adjust the temporal patterns of skills™



Prior works often fail to learn

behaviors

-

Both approaches often fall

to capture the periodic structure of behaviors.
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Intuition



Intuition

Construct a circular latent space to capture periodic behavior

$1(Se+2) ...
®1(St+1)

Encoder ¢,

> L(se)




Representations for Periodicity



Representations for Periodicity

To learn a representation that returns to its initial state every 2L timesteps..



Representations for Periodicity

To learn a representation that returns to its initial state every 2L timesteps..
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Representations for Periodicity

To learn a representation that returns to its initial state every 2L timesteps..

¢r(St+1)
JIpsp,¢ = Ep(T,L) [H@L(SHL) - CbL(St)Hz — k H¢L(St+L) + ¢L(3t)”2}
st |lon(sirrn) —on(se)llz < L,
b1 (se) ¢r(Se+1) |br(se41) — Pr(se)lla < L sin(m/2L)

“Constructs a 2L-gon inscribed 1n a circle of diameter L”
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Intrinsic reward

To learn a policy 7(a | s, L) that repeats every 2L timesteps..
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Intrinsic reward

To learn a policy 7(a | s, L) that repeats every 2L timesteps..

¢bL(St+1) .
- A = |pr(si1) — dr(si)ll2 — Lsin(m/2L)

¢1.(s¢) 7nPSD(Sta3754-1,[/) — GXp(—ﬁ;Az)
LSt

“Single-step intrinsic reward encouraging 2L-periodicity”
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How can PSD learn periods?

Propose increasingly harder periods to expand into the range



How can PSD learn maximally diverse periods?

Propose increasingly harder periods to expand into the dynamically feasible range

<4 Trained Period =———p

Training epoch

o

Dynamically Feasible Period = Trained Period

* See our paper for detailed update rule



Results

State-based environment

* See our project page for more experimental demos
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Pixel-based environment



Results

Objective of METRA

jMETRA,(;S m E(S s’ ,z)~D [(Cbm( ) ém(s))—r'z + Am min (671 o ||¢m(3,) o Qbm(s)”%)]
IMETRA N, = —Am - E(s.5/.2)~D [mm (67 1 — ||¢m(3,) - qu(s)H%)] ;

Intrinsic Reward of PSD with METRA

@L(S) — ¢L(87 :)n ¢m(8) — (bm(va)

T—1

7T((l ‘ S 2y L) < arg m;xx ]Ep(T,.:,L) |: ;: \(qu(st-i-l) g ¢m(8t))T‘;+§Xp(_l{ A(L)zl]
t=0

T'METRA T'PSD

* See our paper for details



Results

Ant Walker2d

* See our project page for more experimental demos
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Skill trajectories in the frequency domain
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Results

Table 1: Comparison of downstream task performance. We evaluate PSD against existing skill
discovery methods. High-level policies are trained using PPO with the skill policies kept frozen. All
reported values are average returns over 10 seeds.

Downstream task DIAYN DADS CSD METRA PSD (Ours)

HalfCheetah-hurdle 0.6+0.5 0.9+0.3 0.8+0.6 1.9+038 3.8+20
Walker2D-hurdle 2.6+05 1.9+03 4.1+13 3.1+05 54+14
HalfCheetah-friction 13.2+34 12.4+29 12.54+38 30.1+13.1 43.4+19.1
Walker2D-friction 4.6+12 1.6+0.1 5.3+03 5.2+1.6 8.7+1.7




Conclusion

We introduce Periodic Skill Discovery (PSD), a Oty
framework for unsupervised skill discovery that captures &8 & i i 8 s
the periodic nature of behaviors by embedding states i .;

into a circular latent space. T PRAT LN

PSD provides a scalable and principled framework for [@)i i
discovering temporally structured behaviors in RL.

Project Page (Demos)



